Hypoxia \& Hypoxemia

Mechanisms of oxygen deprivation

Hypoxia
Reduced oxygen delivery to tissues

Decreased cardiac output
Hypoxemia
Anemia
Carbon monoxide poisoning

Hypoxemia
Reduced partial pressure of oxygen in blood
$\mathrm{O}_{2} \xrightarrow{\circ}{ }^{\circ}$

Normal A-a gradient:

- Low FiO_{2} (high altitudes)
- Hypoventilation

Increased A-a gradient:

- V/Q mismatch
- Right-to-left shunt
- Diffusion limitation

Ischemia

Reduced blood flow to tissues

Decreased venous drainage
PaO_{2} does NOT correct with oxygen in shunt

Oxygen-Hemoglobin Dissociation Curve

O_{2} Content of blood $=\left(1.34 \times[\mathrm{Hb}] \times \mathrm{SaO}_{2}\right)+\left(0.003 \times \mathrm{PaO}_{2}\right)$

Anemia - $\downarrow[\mathrm{Hb}]$

- Decreased hemoglobin level
- Reduced O_{2} carrying capacity

Carbon monoxide - $\downarrow \mathrm{SaO}_{2}$

- CO has greater Hb affinity than O_{2}
- Causes left shift in Hb curve \& impaired O_{2} offloading to tissues
- Reduced O_{2} saturation of Hb
- Normal pulse oximetry reading

Hypoxemia - $\downarrow \mathrm{PaO}_{2}$

- Less dissolved O_{2} for binding Hb

Reproduced with permission from Levitzky MG. Pulmonary Physiology, 9th ed. New York, NY: McGraw Hill; 2017

Alveolar Gas Equation

$$
\mathrm{PAO}_{2}=\mathrm{PIO}_{2}-\mathrm{PaCO}_{2} / \mathrm{R}
$$

$\mathrm{PIO}_{2}=\mathrm{FiO}_{2} \times \mathrm{Pb}$
PAO_{2} - alveolar PO_{2} PaO_{2} - arteriolar PO_{2}
On room air at sea level: R - respiratory quotient (0.8)
$\mathrm{PIO}_{2}=0.21 \times 760 \mathrm{~mm} \mathrm{Hg} \quad \mathrm{PIO}_{2}-\mathrm{PO}_{2}$ of inspired air
$\mathrm{PIO}_{2}=\sim 150 \mathrm{~mm} \mathrm{Hg}$
$\mathrm{FiO}_{2}-\mathrm{O}_{2}$ fraction of air Pb - barometric pressure
$\mathrm{PAO}_{2}=150 \mathrm{~mm} \mathrm{Hg}-\mathrm{PaCO}_{2} / 0.8$
$\mathrm{A}-\mathrm{a}$ Gradient $=\mathrm{PAO}_{2}-\mathrm{PaCO}_{2}$
Normal A-a gradient increases with age (< age/4 + 4)

V/Q Mismatch

Ventilation (V) \& perfusion (Q) are not matched (ideal $\mathrm{V} / \mathrm{Q}=1$)
$V / Q=0$

- Perfusion without ventilation (Shunt)
- ie, alveolar obstruction
$V / Q=\infty$
- Ventilation without perfusion
- ie, pulmonary embolism

