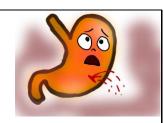
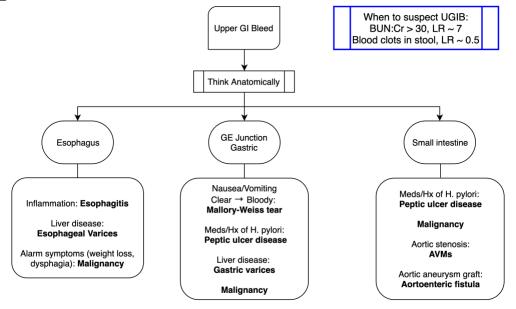
Run the List Handouts

Updated after every organ block is completed


RUN THE LIST



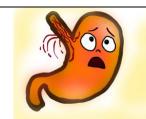
Non-Variceal Upper GI Bleed

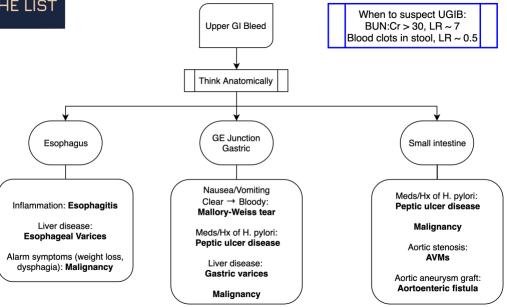
Handout compiled by Moses Murdock (@haematognomist)

Discussant: Dr. Navin Kumar

1. Initial Steps:

- Is the Patient Stable? → triage
 - Vital signs (blood pressure, heart rate)
 - Tachycardic at rest: <15% blood volume loss
 - + Orthostatic = systolic ↓ by 20 mmHg or diastolic ↓ 10 mmHg upon standing: > 15% blood volume loss
 - Hypotension at rest: > 40% blood volume loss
- Resuscitation
- Medications to consider holding:
 - o aspirin, anti-platelets, anti-coagulants
 - o Consider need for reversing anticoagulation

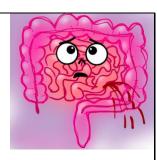

- Resuscitation!
 - Access: 2 large-bore peripheral IV → Fluids
 - Transfusion threshold: Hg < 7 g/dL better than Hg < 9 g/dL. Except: exsanguination, known cardiovascular or cerebrovascular disease. Why?
 - Dilution of clotting factors
 - Worsen portal hypertension
 - Want to keep splanchnic vasoconstriction!
- Proton pump inhibitor, IV BID: want a gastric pH > 6 to facilitate clot formation
- **Erythromycin**: promotes gastric emptying via motilin-like properties → good endoscopic views (administer 30-60 minutes prior to EGD; can use metoclopramide as alternative)
- Endoscopy:
 - Variceal: within 12 hours
 - Non-Variceal: within 24 hours, too soon (3-4h) can be bad (NVUGIB needs to be well resuscitated and medically managed!)

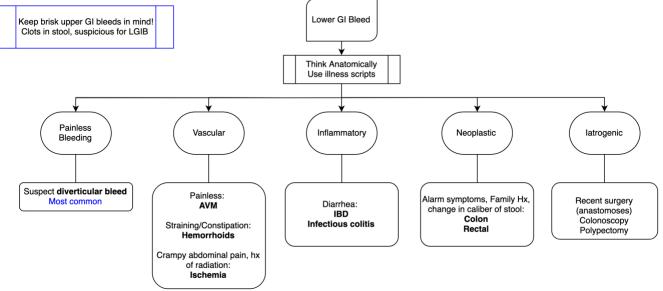


Variceal Upper GI Bleed

Handout compiled by Moses Murdock (@haematognomist)

Discussant: Dr. Navin Kumar


- 1. Initial steps: if any history suspicious for portal HTN, consider variceal until proven otherwise
 - Is the patient stable → resuscitate!
 - Vitals, orthostatics, ABCs
 - Protect airway if active hematemesis prior to EGD
 - Medications to consider holding:
 - o aspirin, anti-platelets, anti-coagulants
 - Consider need for reversing anticoagulation

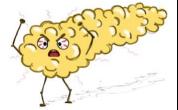

- Resuscitation!
 - Access: 2 large-bore peripheral IV → Fluids
 - Transfusion threshold: Hg < 7. Except: exsanguination, known cardiovascular or cerebrovascular disease. See NVUGIB handout for more details.
- IV octreotide: lowers portal pressure. 50 mcg IV bolus → 50 mcg/hr drip, for 3-5 days
- Antibiotic prophylaxis (mortality benefit): IV ceftriaxone (5 7 day course)
- Proton pump inhibitor, IV BID: want a gastric pH > 6 to facilitate clot formation
- **Erythromycin**: promotes gastric emptying via motilin-like properties → good endoscopic views (administer 30-60 minutes prior to EGD; can use metoclopramide as alternative)
- Endoscopy for variceal:
 - O Within 12 hours!
 - Post-Endoscopy: monitor for re-bleeding, hepatic encephalopathy
- Primary prophylaxis (no prior variceal bleed):
 - Baseline upper endoscopy q1-3 years to screen for varices
 - o If small varices + advanced cirrhosis; or med-large varices + any cirrhosis
 - Non-selective beta-blocker or serial endoscopic banding (not both)
- Secondary prophylaxis (s/p variceal bleed):
 - Both non-selective beta blockade + serial endoscopies & banding

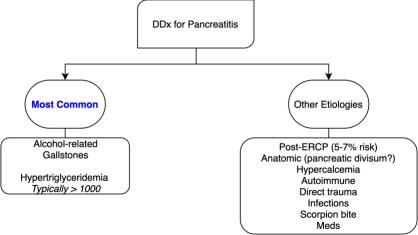
Lower GI Bleed

Handout compiled by Moses Murdock (@haematognomist)
Discussant: Dr. Navin Kumar

1. Initial Steps:

- Is the patient hemodynamically stable? vital signs, triage
- Resuscitation: 2 large bore peripheral IVs, IV fluids
- Medications to consider holding:
 - o aspirin, anti-platelets, anti-coagulants
 - Consider need for reversing anticoagulation

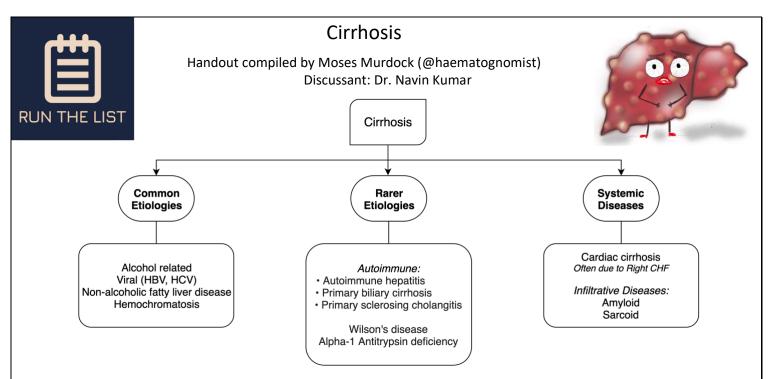

- Proton pump inhibitor, IV BID if brisk hematochezia with hemodynamic instability → suspect upper source (15% of cases!)
- Transfusion threshold same as UGIB, Hg < 7 (extrapolated from UGIB literature)
- Diagnostic Studies:
 - Gold standard = Colonoscopy, pt needs to be <u>hemodynamically stable</u>, within
 24 hours. Bowl prep very important! Both diagnostic and therapeutic:
 - Argon plasma coagulation therapy: radiation proctitis, AVM
 - Clip/Cautery: diverticular, post-polypectomy
 - Video capsule endoscopy: to diagnose small bowel bleeding sources
 - Push/balloon enteroscopy: to diagnose and treat small bowel bleeding sources
 - Localizing scans (all require active bleeding): may use if patient is hemodynamically stable but rebleeding after negative EGD/colonoscopy, or if patient is hemodynamically unstable and thus prepping for a colonoscopy is not an option
 - CT-angiogram (need to give contrast)
 - Tagged RBC scans (localized to general areas and thus not as specific)
 - IR angiography. No prep needed, can intervene, but risk of ischemic complications. If unstable → go straight to IR for potential embolization



Pancreatitis

Handout compiled by Moses Murdock (@haematognomist)

Discussant: Dr. Navin Kumar



1. Overall Approach

- Diagnostic Criteria = 2/3 of the following:
 - Clinical presentation: epigastric pain to the back, nausea, vomiting
 - Biochemical pancreatic inflammation: lipase/amylase > 3X upper limit of normal
 - Radiographic: CT with IV/PO contrast (US and MRI other options)
- Severity, can use scores: SIRS, BISAP
 - o Mild: no end-organ failure or systemic complication
 - Moderate/Severe: local complications or persistent organ failure
 - Elevated Hg, BUN, Cr: worse prognosis given intravascular volume depletion

- NPO: bowel rest.
 - Advanced diet if: pain is improving, no signs of ileus. Enteral feeding preferred
 - Mild: low fat/solid diet (no need to start with clears)
 - Moderate-Severe: 3 days of NPO ok, then enteral feeding if unable to take PO
- Fluid resuscitation:
 - o Aggressive, maintenance 250-500cc/hr within 24h, then start peeling back
 - Consider Foley to monitor, goal 1 cc/kg/hr urine output, trend Hg, Cr, BUN
- Pain control
- Diagnostic studies:
 - Liver enzymes (cholestatic pattern?)
 - Fasting lipids
 - RUQ abdominal ultrasound
 - CT scan: contrast in an intravascularly dry patient is risky. Get if you think something else is going on, or complications develop. NOT up-front.
- Watch for complications:
 - CBD stone, think about ERCP (not up-front, trend LFTs unless cholangitic!)
 - Acute complications: ARDS, SMV thrombosis, electrolytes, volume from IVF
 - Subacute (few days): fluid collection, pancreatic necrosis
 - Longer (> 4 weeks): pseudocyst, abscess, chronic pancreatitis

1. **Decompensated?** Think: ascites, spontaneous bacterial peritonitis (SBP), Variceal hemorrhage, hepatic encephalopathy + others.

2. Physical Exam:

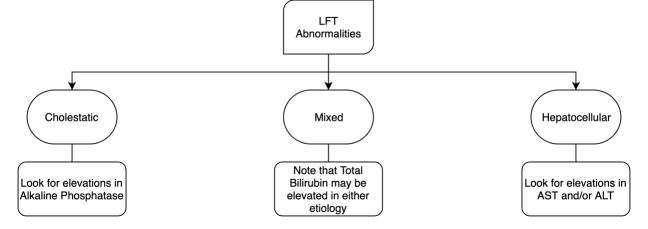
- Portal hypertension: Caput medusa, ascites/fluid wave
- Hyperestrinism: spider angiomas, gynecomastia, palmar erythema
- CNS: hepatic encephalopathy

3. Labs:

- Assess synesthetic function: INR, albumin
- SBP? get diagnostic paracentesis early! look for > 250 polys, SAAG > 1.1
- Workup in a new cirrhotic: If idiopathic, consider biopsy
 - Viral hepatitis serologies (HBV, HCV)
 - Iron studies
 - Autoimmune: ANA + specific antibodies (anti-mitochondrial, anti-smooth muscle)
 - Other: serum ceruloplasmin, alpha-1 antitrypsin level

4. Initial Management = VIBES:

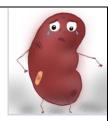
- Volume:
 - salt restrict
 - o diuretics (spironolactone & Lasix at 5:2 ratio) → Large volume paracentesis
 - Remember to give albumin if LVP!
- Infection: think SBP, one option is IV ceftriaxone, albumin d1 & d3, prophylaxis w/ cipro
- Bleeding: non-selective beta-blockers (gets at underlying pathophys) > banding (if large)
- Encephalopathy: lactulose ± rifaximin
- Screening/Surgery:
 - Vaccination: HAV, HBV, flu, pneumovax
 - Avoid alcohol
 - HCC screening: ultrasound every 6 months
 - Surgery (transplant): consider when MELD > 15 & evidence of decompensation

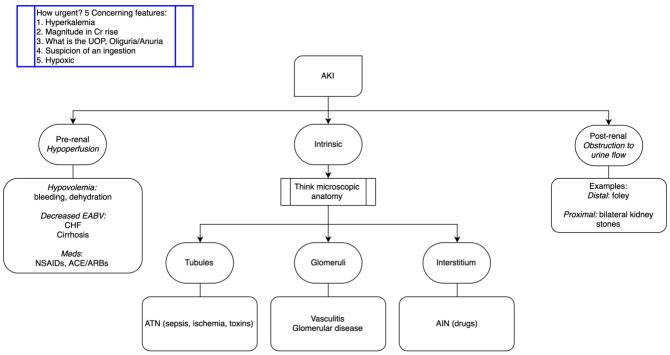


Biliary Pathology

Handout compiled by Moses Murdock (@haematognomist)

Discussant: Dr. Navin Kumar


- I. DDx based on Anatomy: Patient w/ fever, RUQ abdominal pain, + Murphy's sign
 - Symptomatic cholelithiasis (biliary colic): stone transiently obstructing the cystic duct
 - Acute cholecystitis
 - stone impacted in cystic duct
 - acalculous (~10% of cases, usually critically ill patients)
 - **Choledocholithiasis:** stone in common bile duct (CBD). Very strong predictors of CBD stone (any of the following):
 - Visualize CBD stone on ultrasound
 - Presenting with ascending cholangitis
 - Total Bilirubin > 4
 - **Ascending cholangitis: emergency**. Think Charcot's Triad (RUQ pain, fever, jaundice) and Reynold's Pentad (Charcot's + altered mental status and hypotension).
- II. Initial Management:
 - Labs: CBC, LFTs, Imaging: RUQ abdominal ultrasound
 - Symptomatic cholelithiasis: cholecystectomy in the outpatient setting
 - Acute cholecystitis:
 - Cover gram negative rods & anaerobes (empiric antibiotics, example: Pip-tazo, cipro+metronidazole).
 - Keep antibiotics going until source control is achieved (cholecystectomy)
 - o Cholecystostomy tube (by IR) used if patient is not a surgical candidate
 - Extend antibiotic course if patient has documented bacteremia
 - Choledocholithiasis: ERCP to remove CBD stone followed by cholecystectomy
 - Ascending cholangitis: emergent ERCP, IV antibiotics, IV fluids → cholecystectomy
 - Consultants:
 - Surgeons should be involved in all cases
 - GI when there is concern for CBD stone

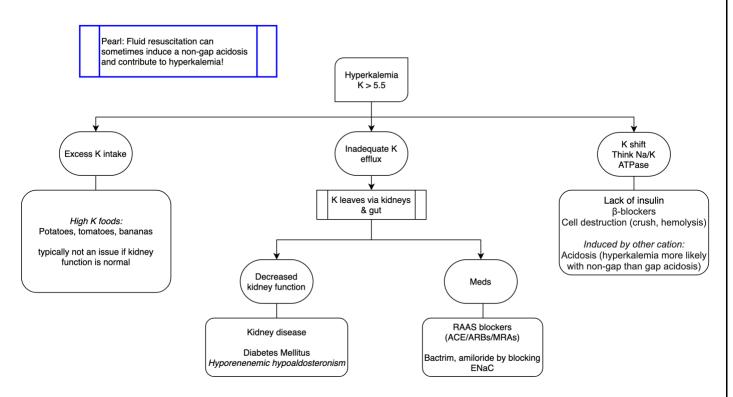

Acute Kidney Injury

Handout compiled by Moses Murdock (@haematognomist)

Discussant: Dr. Sushrut Waikar

1. Diagnostic Approach:

- Suspicion for volume depletion → give fluids!
- Assess obstruction → renal ultrasound
- Take a look at med list
- Labs:
 - Electrolytes, BUN, Ca
 - o Ca, Phos, Uric acid,
 - CBC w/ diff (eosinophilia can be clue for AIN)
- Urinalysis
 - o Cells: infection vs. inflammation
 - Protein: assess for nephrotic syndrome
 - Casts
 - Muddy brown → suggestive of ATN
 - RBC → glomerulonephritis
 - WBC → AIN
 - Hyaline → pre-renal azotemia
 - Urine electrolytes of interest: Na, K.
 - FeNa < 1% suggestive of pre-renal azotemia...but lots of exceptions
 - FeNa: should not be sole basis for deciding on IVF
- Renal Replacement Therapy:
 - AEIOU to remember some indications: acidosis, electrolyte abnormalities (exp: hyperkalemia), ingestions (exp: ethylene glycol), Overload (severe, pulmonary edema), uremia (encephalopathy, pericarditis)



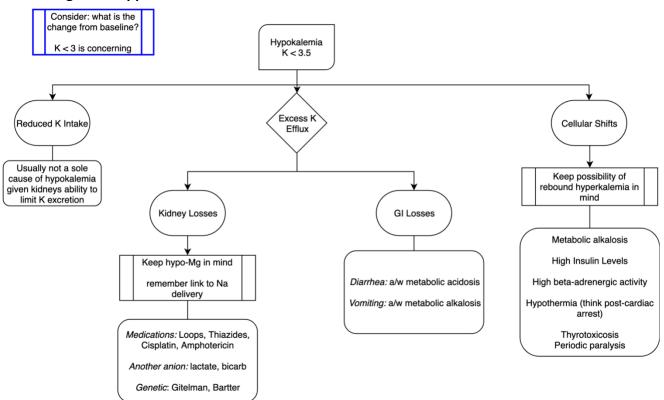
Hyperkalemia

Handout compiled by Moses Murdock (@haematognomist)

Discussant: Dr. Ankit Patel

1. Diagnostic Approach:

- Workup:
 - Repeat measurement: to trend and to r/o pseudohypokalemia (suspect in high WBC or tubes sitting out for prolonged periods of time)
 - Get EKG: peaked T-waves → increased PR interval → QRS widened → sine wave
- Treatment:
 - Stabilize cardiac membrane: Calcium gluconate
 - o Shift K:
 - Insulin: activates Na/K ATPase (consider dextrose if glucose < 250)
 - β-agonist (exp: albuterol) 10X dose than used for COPD
 - Eliminate K through:
 - Urine: loop diuretics (can give IVF simultaneously, very effective!)
 - Gl system:
 - a. kayexalate (can cause ischemic necrosis/ischemic colitis and perforation watch out in patients w/ gut pathology.
 - b. New, safer alternatives (exp: Patiromer, Sodium Zirconium cyclosilicate)
 - Dialysis: patients already on dialysis → consider extra session.


Hypokalemia

Handout compiled by Moses Murdock (@haematognomist)

Discussant: Dr. Ankit Patel

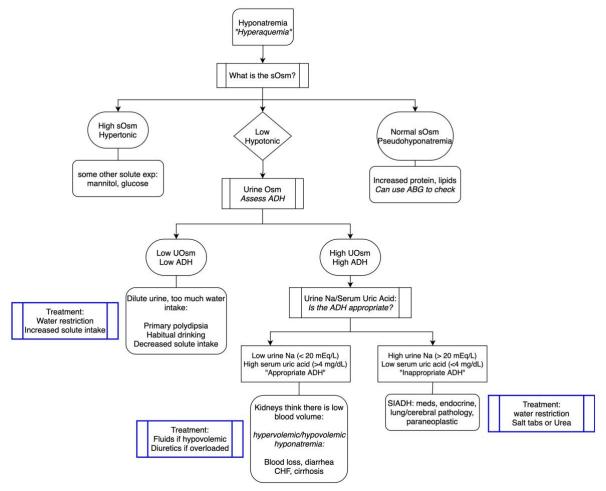
1. Diagnostic Approach:

2. Management:

- Workup:
 - Repeat measurement
 - o Get an EKG: flattened T-waves, U waves, prolonged QT, arrythmias, asystole
 - Urine K:Cr to determine if urinary potassium losses
 - Trend K as you replenish, watch out for rebound (especially if you suspect a shift etiology)

Treatment:

- If chronic, total body potassium depletion can be 100 mEq for every decrease in serum K of 0.2 mEq/L.
- Replenish: 10 mEq for every 0.1 away from 4
 - Careful in patients with kidney disease. 10 mEq/ serum Cr for every 0.1 mEq/L increase in serum K desired
 - 40 mEq q4 6h orally
 - 10 mEq/h IV, central access is ideal
- Remember to replete magnesium to allow kidneys to minimize urinary potassium excretion.


Hyponatremia

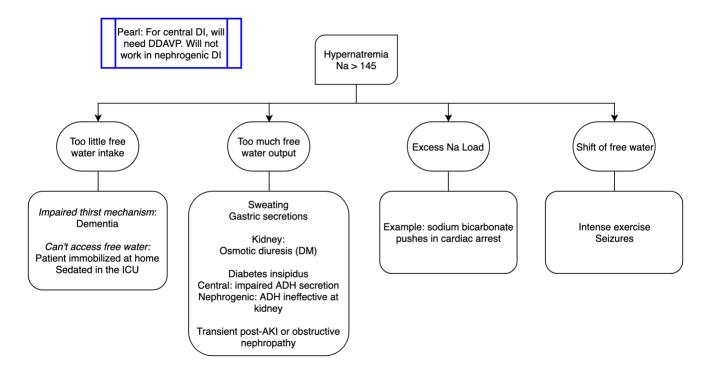
Handout compiled by Moses Murdock (@haematognomist)

Discussant: Dr. Ankit Patel

- 1. Diagnostic Approach: severity, change from baseline, symptomatic?
 - Symptomatic? Headache, nausea, vomiting, dizziness, seizures, brain herniation

- Workup:
 - o If no prior labs, assume chronic hyponatremia
 - Urine Na: confounded by Na intake or diuretics
 - Check Na frequently during Tx: q1h in severe cases
 - Trending Urine Osm & Na can help assess whether ADH is being turned off
- Treatment:
 - Symptomatic:
 - hypertonic saline to increase serum Na 1-2mEq to improve symptoms
 - If hyponatremia occurred within 48h → correct to baseline within 24h
 - Chronic hyponatremia
 - 4 6 mEq in first 24h (to avoid osmotic demyelination syndrome)
 - If overcorrecting, give D5W and consider DDAVP

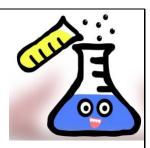
Hypernatremia

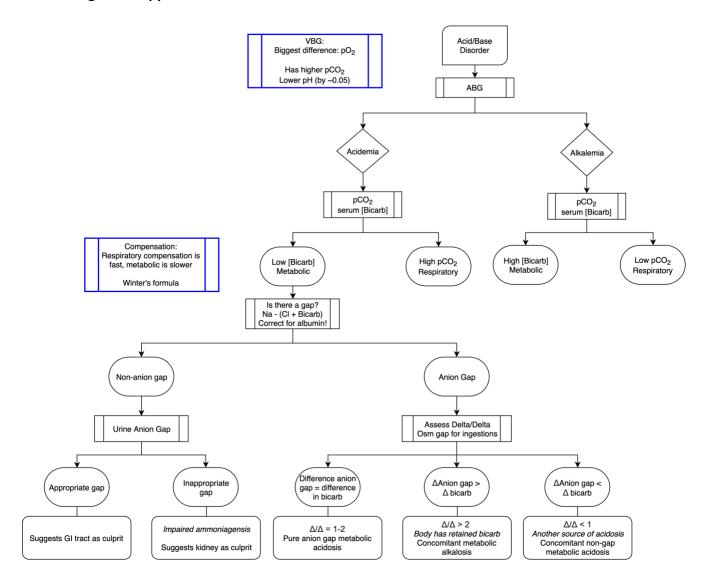

Handout compiled by Moses Murdock (@haematognomist)

Discussant: Dr. Ankit Patel

1. Diagnostic Approach:

- Often related to impaired thirst mechanism
- Consider severity and change from baseline


- Workup:
 - Clinical history is key!
 - \circ Can measure Na/K in fluids. If less than serum \rightarrow electrolyte free water loss
- Treatment:
 - Chronic (> 48h): correct slower than 12 mEq/24h
 - Acute (24 48): correct to baseline within 24h
 - Calculate free water deficit: https://www.mdcalc.com/free-water-deficit-hypernatremia
 - Route of administration:
 - PO: preferred in patients who can tolerate it
 - NG/IV also options
 - Consider ongoing free water losses!
 - Monitoring: frequent serum [Na] q2-3h initially


Acid-Base Disorders

Handout compiled by Moses Murdock (@haematognomist)

Discussant: Dr. Ankit Patel

1. Diagnostic Approach:

2. Additional Pearls:

- For metabolic alkalosis 2/2 vomiting very difficult to correct if chloride depletion isn't addressed
- IV bicarbonate generates CO₂ if patient can't breathe it off, can cause problems
 - o IV bicarb most helpful: non-gap acidosis most responsive
 - o Lactic acidosis: least responsive
 - o pH < 7.1, can consider more strongly due to hemodynamic effects of acidosis

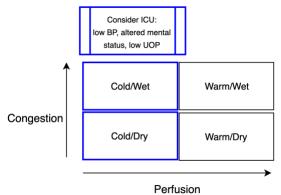
Approach to Urinalysis

Handout compiled by Moses Murdock (@haematognomist)

Discussant: Dr. Sushrut Waikar

1. Pearls

- UTI: symptomatic pt: +WBC, + RBC, bacteria, +LE, + nitrites
- + WBC, +LE but no bacteria = sterile pyuria, Dx to consider:
 - Prostatitis, Interstitial cystitis
 - Genitourinary TB
 - o Inflammation in kidney, exp: AIN
- Patterns to recognize:
 - Heme+ but no RBC on microscopy
 - Intravascular hemolysis
 - Rhabdomyolysis
 - Glucose+
 - Uncontrolled DM or pt on SGLT2 inhibitor
 - Proximal tubule dysfunction: multiple myeloma, heavy metals, drugs (tenofovir) aka Fanconi syndrome
 - o negative dipstick, +protein/high UPCR. Suspect multiple myeloma.
 - urine albumin:Cr often used to screen patients with DM
- Effect of urine concentration
 - 1.003 = very dilute. If 1+ protein \rightarrow could be a ton of protein!
 - 1.025+ = very concentrated. If trace protein → probably nothing. Note: glucose
 & contrast in urine can cause specific gravity to be artificially high!
- Urine sediment associations:
 - Hyaline casts: pre-renal azotemia
 - Muddy brown casts: ATN (not-specific, RPGN, vasculitis etc.)
 - WBC casts: AIN
 - RBC casts: acute glomerulonephritis (look for dysmorphic red cells)
 - o Squamous/epithelial cells: may indicate lack of a clean catch
- If Foley specimen: RBC is expected, chronic inflammation in long-term Foley (WBC, bacteria).
- Asymptomatic bacteriuria (>100K CFU of a single species)
 - Don't necessarily treat except:
 - Pregnant
 - Kidney transplant recipients
 - Undergoing surgery


Acute Decompensated Heart Failure

Handout compiled by Moses Murdock (@haematognomist)

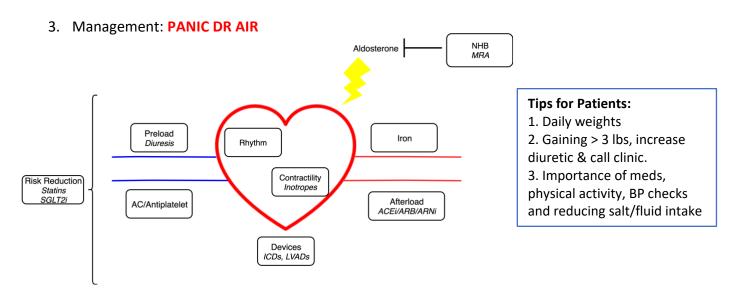
Discussant: Dr. Emily Lau

- 1. Frameworks: LVEF & Hemodynamic Profile
 - By LVEF: < 40% (HFrEF), >50% (HFpEF), 40 50% (mid-range EF)

2. Initial Steps

- Triage: does the patient need to go to the ICU for: diuresis, pressors, inotropes, PA catheter?
- Usually first step is diuresis
- Close monitoring is key: VS, labs, UOP, serial physical exam, repleting electrolytes

- Workup:
 - o History: what was the trigger?
 - Common: difficulty maintaining 2g NaCl, 2L fluid restriction
 - To keep in mind: thyroid/renal disease, toxins (alcohol, cocaine, meds) vs. idiopathic
 - Can't miss: ischemia/CAD, arrythmias, uncontrolled HTN, valvular disease
 - Physical exam: mental status, extremity warmth, UOP, JVP, edema/ascites, pulmonary/CV exam
 - o Labs: CBC, BMP, troponin, LFTs, lactate, NT-pro-BNP
 - Imaging:
 - EKG especially if ischemia on DDx, telemetry for arrhythmias
 - CXR: assess pulmonary edema, size of heart
 - TTE: LVEF, regional wall motion abnormalities, valvular dysfunction
- Therapy: maintain adequate CO = HR x SV
 - Preload: diuresis, usually loop diuretics. IV preferred to avoid absorption problems due to gut edema!
 - Afterload: ACEi, nitrates
 - Contractility: inotropes
 - o Neuro-hormonal blockade (if HFrEF): MRA/spironolactone
 - Consults: consider if concerned for shock, ischemia, difficulty w/ diuresis patient. Every CHF patient should have an outpatient cardiologist!


General Management of CHF

Handout compiled by Moses Murdock (@haematognomist)

Discussant: Dr. Emily Lau Special thanks to Drs. Malishchak & Wang

- 1. Etiologies: see Decompensated Heart Failure Episode. Key: HFrEF vs. HFpEF
- 2. Disease progression: NYHA Classes: no symptoms (1) → symptoms at rest (4)

Preload: Diuresis, dosing to daily weights & volume exam, watch electrolytes & Cr

- Loop diuretics (furosemide, torsemide), exp: -1L net fluid
- Sequential nephron blockade: metolazone, chlorothiazide

Afterload:

- Mechanism: vasodilation → decreased afterload, increased SV
- Isosorbide Dinitrate, hydral, ACEi/ARB/Angiotensin Receptor-Neprilysin inhibitor → mortality benefit in HFrEF

Neuro-hormonal blockade:

- Mechanism: decreased myocardial remodeling
- β-blockers (hold in cardiogenic shock!), spironolactone, eplerenone.

Inotropes/Contractility: "cold" patients

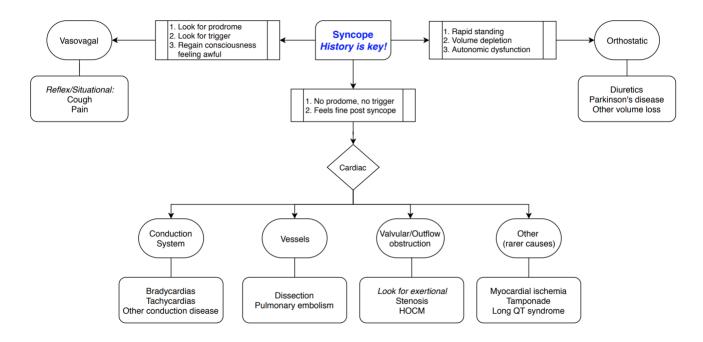
- inodilators: dobutamine, milrinone
- Inopressors: dopamine, epinephrine, norepinephrine

Devices: also consider heart transplant!

- Defibrillators: chronic CHF & stable, LVEF < 35% → ICD
- Cardiac resynchronization tx: chronic CHF & stable. ↓ LVEF, QRS > 120-150, LBBB
- Mechanical circulatory support: very sick patients → Intra-aortic balloon pump, Ventricular Assist Devices, Tandem, ECMO etc.

Rhythm: Afib = rate/rhythm control. Ventricular tachycardia also common

Anticoagulation/Antiplatelet: Aspirin, anti-platelet for PCI in CAD. Anticoagulation for Afib Iron per FAIR-HF – significant improvements in NYHA class, 6-minute walk & QOL Risk reduction: secondary prevention statin or SGLT2 inhibitors


Cardiac Causes of Syncope

Handout compiled by Moses Murdock (@haematognomist)
Discussant: Dr. Jason Ryan

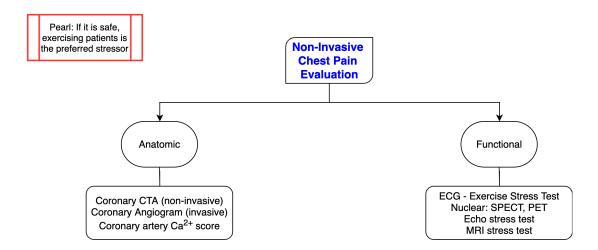
1. Definition:

- Sudden loss of consciousness due to hypoperfusion of the brain
- Absence of other causes: seizure, hypoxia, hypoglycemia, intoxication etc.

2. Workup: be wary of over-testing

- EKG: look for evidence of unhealthy conduction system: prolonged PR interval, LBBB, RBBB, slow sinus rate etc.
- In select patients:
 - Carotid ultrasound (to work up transient ischemic)
 - Orthostatic vital signs
 - Telemetry/heart monitors
- Who is high risk and/or deserves inpatient admission
 - Vasovagal → usually no need to admit
 - Cardiac cause that may recrudesce → warrants admission

- Immediate measures:
 - Lie down + elevate lower limbs
 - Obtain vital signs, history
- Indications for AICD (automatic implantable cardioverter defibrillator)
 - o Survives ventricular Tachycardia, Ventricular fibrillation
 - High risk: very low EF especially in context of ischemia
- Guide to cardiology consult: is there something only they can provide?



Non-Invasive Evaluation of Chest Pain

Handout compiled by Moses Murdock (@haematognomist)
Discussant: Dr. Sanjay Divakaran

- 1. Bayes' Theorem: In patients at extremes of pre-test probability (very high or low), diagnostic testing may not affect clinical management. Testing can change management for those at intermediate risk.
 - In coronary artery disease (CAD), intermediate risk range is broad in American cardiology guidelines, 10 – 90%
 - Diamond-Forrester: character of pain, sex, age
 - <u>CAD consortium</u>: character of pain, sex, age, clinical factors
- 2. What guestion are we trying to answer? For example:
 - For my patient with no known CAD, are his/her symptoms due to flow-limiting CAD?
 - For my patient with known CAD, are the return of his/her anginal symptoms from flow-limiting CAD, and if so, in what myocardial territory is the ischemia?
 - In asymptomatic severe aortic stenosis, is the patient truly asymptomatic with exercise?

- 3. Deciding between tests:
 - Anatomic:
 - o In lower-intermediate risk patients, coronary CTA can help in guiding nuanced discussions of risk-factor modification as non-obstructive plaque can be visualized
 - o In a young patient with typical angina, coronary CTA may be useful to rule out an anomalous coronary artery with a malignant course as the cause of symptoms
 - Functional: what's the visualization?
 - Abnormal ECG at baseline (LBBB, ST changes etc.) ETT-ECG will be non-diagnostic
 - o Visualize myocardium, known CAD diagnosis nuclear, echo, or MRI
- 4. Things to think about when interpreting the report:
 - How much did the patient exercise? Did the patient have symptoms during the stress test?
 Was there evidence of ischemia?
- 5. Counseling patients: when to come back. If pain is worse, changes in quality, occurs at lower exercise thresholds, or occurs at rest.

Chest Pain

Handout compiled by Moses Murdock (@haematognomist)

Discussant: Dr. Zaid Almarzooq

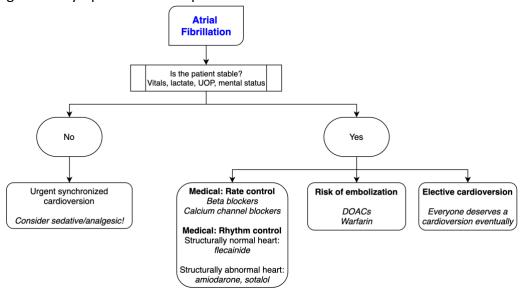
- 1. **Definition:** ACS = STEMI + NSTEMI + Unstable Angina
- 2. History: SOCRATES questions and risk factors (demographics, behavioral factors, family history)
 - Red flags:
 - o Onset:
 - Sudden onset (aortic syndromes, PE, pneumothorax [PTX])
 - Gradual onset (ACS)
 - Character:
 - Dull pain (ACS)
 - Sharp, reproducible with palpation (less likely ACS)
 - Relieving/exacerbating factors:
 - Positional, pleuritic (less likely ACS)
 - Exertional (precursor to ACS)
 - Possible atypical symptoms in women, DM, elderly, and/or heart transplant recipients

3. Physical Exam:

- Sick vs. not sick: what is the acuity, in distress?
- Vitals: BP in both arms and radial pulse bilaterally: if discrepant (>20 mmHg) consider aortic dissection; if bradycardia consider RCA occlusion
- Murmurs: acute MR, VSD, free wall rupture (muffled heart sounds); JVD
- Lung exam: decreased breath sounds (PTX)
- Is the pain reproducible (costochondritis)?
- 4. DDx (Can't Miss Diagnoses) similar to CPSolvers schema
- 5. Diagnostic Tests: depends on DDx and pre-test probability
 - ACS:
- EKG (compare to prior). Often missed: RV infarct (right sided ECG), posterior MI (posterior ECG)
- o Troponin and CK-MB (use if considering reinfarction i.e., chest pain after PCI)
- TTE (look for complication MR, VSD, tamponade)
- PE:
- o CT-PE
- CXR (also helpful for PTX—air around lung, and esophageal rupture—air around mediastinum)
- Aortic syndrome: CT-Aortogram
- Other Labs: kidney function and coags (to determine contraindications to therapies)

6. Treatment

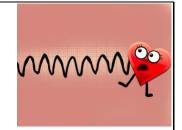
- Risk stratification of NSTEMI and UA: TIMI score and/or GRACE score
- Medical treatment:
 - o 1st line: ASA 300mg chewable, heparin drip, nitroglycerin drip (*if bradycardic or potential RCA occlusion, may not be a good idea*).
 - o THROMBINS-A
 - Thienopyridines anti-platelets: (P2Y₁₂ inhibitors, e.g., clopidogrel)
 - Heparin
 - RAAS inhibitors prevent remodeling (especially in reduced low LV)
 - Oxygen: if hypoxic. Several trials suggest harm in non-hypoxic pt
 - Morphine: for symptomatic benefit—not up-front, can mask ischemic symptoms
 - Beta blockers: first 24h, not in shock, HF, or bradycardic
 - Invasive intervention (catheterization)
 - i. STEMI: cath→90 minutes (door to balloon time), fibrinolytics→30 minutes (door to needle time)
 - ii. Consider more urgent cath in NSTEMI/UA if unstable, refractory chest pain, or high-risk score
 - Nitroglycerin: venodilator, coronary vasodilator
 - Statins: high potency (exp: atorvastatin)
 - Aspirin



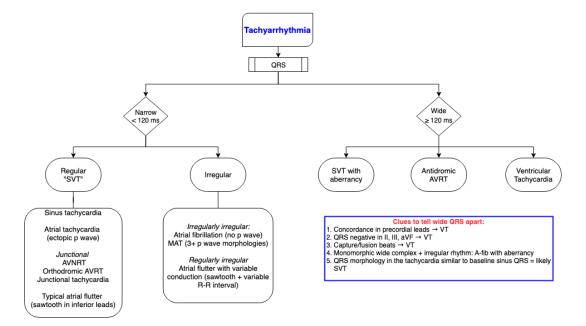
Atrial Fibrillation

Compiled by Moses Murdock (@haematognomist)
Discussant: Dr. Zaid Almarzooq

- 1. Description: non-organized atrial rhythm
 - vs. organized rhythms: atrial tachycardia, atrial flutter, etc.
 - Paroxysmal: self-terminating within 7 days
 - Persistent: lasts for more than 7 days or requiring termination with cardioversion
 - Long-standing persistent: more than 1 year → permanent
- 2. Clinical presentation:
 - Asymptomatic
 - Palpitations, shortness of breath
 - Tachycardia-mediated cardiomyopathy & CHF. Key question: which came 1st, CHF or Afib?
- 3. Causes/Precipitants
 - Increased sympathetic tone (exercise, emotion)
 - Structural heart disease, thyrotoxicosis
 - Alcohol
- 4. Management: symptom control + prevention of cardioembolism


5. Clinical Pearls:

- Rate control: don't need to normalize HR, < 110 is reasonable target. Watch out for CHF
- For antiarrhythmics, think side effects. Exp: amiodarone: "LFTs/PFTs/TFTs"
- Risk calculators for embolization vs. bleeding risk
 - o CHADs-VASC (stroke risk)
 - o HAS-BLED (bleeding)
- DOACs (apixaban, rivaroxaban etc.): not favored in those w/ <u>prosthetic valves</u>, obesity, compliance issues
- Elective cardioversion:
 - If onset <48h &/or TEE ruling out clot in the heart → reassuring to proceed</p>
 - Otherwise, wait for anticoagulation (3 weeks)
 - o Anti-coagulate for at least 4 weeks after

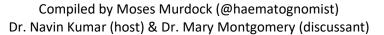

Tachyarrhythmias

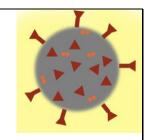
Compiled by Moses Murdock (@haematognomist)
Discussants: Dr. David Wang (host) & Victor Nauffal (discussant)

1. Approach to tachyarrhythmia:

- Is the patient hemodynamically stable? No → synchronized cardioversion vs. defibrillation
- ECG schema, consider using Brugada criteria to tell VT & SVT with aberrancy apart
- Check out the <u>SVT schema</u> from our friends over at the CPSolvers!

- Hx/Physical illness scripts:
 - Young, narrow complex, regular → AVNRT > orthodromic AV reciprocating tachycardia
 - Mitral valve disease/structural heart disease, irregular rhythm → Atrial fibrillation
 - Pulmonary pathology → Atrial flutter or MAT (classically associated with advanced pulmonary disease)
- Labs: BMP, thyroid profile, troponin, BNP, urine toxicology (screening for stimulants)
- Imaging: Echo (looking for underlying structural or valvular heart disease)
- Altering AV node conduction. Should terminate AVNRT, AVRT, can clarify other arrythmias


Maneuver: <u>modified Valsalva</u> Pharmacologic: adenosine


- AVRT/AVNRT: rate control (beta blockers, CCB) → ablation
- Atrial tachycardia: rate control (β-blockers, CCB) → rhythm control (Class IC, III) → ablation
- Atrial Fibrillation: see dedicated RunTheList <u>episode</u>
- Atrial flutter: rate control less efficacious → ablation, anticoagulation similar to A-fib
- MAT: does not respond to cardioversion. Avoid rate/rhythm control medications. Focus on underlying trigger
- Sinus tachycardia: look for underlying trigger

Non-ICU Inpatient Management of COVID-19

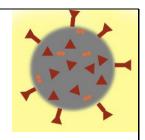
Recorded on: 4/3/2020

1. COVID-19 Symptoms = highly variable

- Outside the hospital: rhinorrhea, cough, sore throat, muscle aches, anosmia, ageusia, diarrhea, abdominal pain, nausea, confusion etc.
- <u>Presenting to ED:</u> profound dyspnea > fevers, abdominal pain, diarrhea, altered mental status + the above
- Helpful this time of year, positivity of other respiratory viruses has nearly gone to zero

2. Diagnosis:

- RT-PCR on nasopharyngeal swab. Test characteristics unclear
 - Viral load highest at onset of illness, goes down after ~ 5 days in mild illness
 - High viral load in nasopharynx even in pre-symptomatic phase of illness
 - Later on, sputum and lower respiratory samples may have better test characteristics
- Other labs:
 - Serology (not widely available yet), unclear association with immunity
 - o Inflammatory markers: ferritin, CRP, ESR, D-dimer, LDH
 - Low pro-calcitonin
 - o Lymphopenia
 - o Elevated troponin and elevated CK in some cases
- Imaging: CXR/CT scans: most often interstitial opacities


3. Treatment: *supportive care is the cornerstone*

- Oxygenation: patients can worsen rapidly. Biggest predictor for severity is age. Other comorbidities may contribute: pulmonary disease, CKD, DM, HTN, CV disease, immunosuppressed states, rising inflammatory markers
- Favoring non-re-breather > HFNC/BPAP due to concern for aerosolization
- Experimental: rapidly evolving
 - o Remdesivir: nucleotide analog. Clinical trial ongoing. Case report
 - Hydroxychloroguine: early data with some confounders, trials ongoing
 - o IL-6 inhibitors: tocilizumab etc. no high-quality data to guide treatment
- 4. Brigham & Women's Hospital COVID-19 Clinical Guidelines

Starting Intern Year During a Pandemic

Compiled by Moses Murdock (@haematognomist) Emily Gutowski (host) & Dr. Walker Redd (discussant) 4/24/20

1. Communication Skills:

- Vital Talk: COVID-19 Communication Skills
- HMS Curriculum subsection on communication
- BWH Palliative Care skills training videos
 - ED goals of care and code status
 - Hospital Medicine goals of care and code status (goals c/w intubation)
 - Hospital Medicine goals of care and code status (goals not c/w intubation)
 - o ICU "sharing concern illness might get worse"
 - o ICU "discussing illness getting worse"
 - o ICU "talking about dying"

2. Clinical Protocols & Practical Tips:

- BWH COVID Protocols
- CORE IM practical tips
- Core IM Goals of Care

Internal Medicine Virtual Learning Resources

Created by: Moses Murdock @haematognomist

1. General Medicine

- a. Tweetorials: Rabih Geha, Tony Breu
- b. Podcasts:
 - i. CPSolvers + app
 - ii. Harrison's Podclass
 - iii. Morning report
 - iv. Curbsiders
 - v. CORE IM
 - vi. NEJM Resident 360 Curbside Consult
 - vii. Last Week in Medicine
- c. OnlineMedEd: Intern content
- d. Strong Medicine Intern Crash Course
- e. My Care Wishes UPenn
- f. Penn Pearls
- g. Penn Frameworks
- h. NEJM Rotation Prep
- i. IM anki deck

2. Cardiology

- a. RunTheList Cardiology + Handouts
- b. Cardionerds
- c. ECG WebMaven for practice
- d. **EKG** course Strong Medicine
- e. EKG Life in the Fast Lane

3. PCCM

- a. Mechanical Ventilation primer RebelEM
- b. Mechanical Ventilation course
 - i. Youtube (Strong) (2h:47m)
 - ii. ICU Reach
- c. ACLS Institute Youtube
- d. Shock course Youtube (Strong)
- e. Internet book of Critical Care
- f. PFT Practice
- 4. GI RunTheList GI + Handouts
- 5. Renal
 - a. RunTheList Nephro + Handouts
 - b. NephSim
 - c. Freely Filtered Podcast

- 6. Neuro Emergency head imaging
- 7. Heme-Onc
 - a. ASH Case Studies for Fellows
 - b. Practice peripheral smears
 - c. Heme-Onc emergencies review
 - d. Anticoag.net (Evidence-based guidelines)
 - e. Plenary Session Podcast
 - f. Outspoken Oncology Podcast
 - g. Hematology Oncology Update Podcast
- 8. ID/COVID-19
 - a. Twitter Handles: <u>Saman</u>, <u>Brief_19</u>, <u>Carlos Del Rio</u>
 - b. HMS COVID curriculum
 - c. BWH COVID Protocols
- 9. Procedures
 - a. Thumbroll App
 - b. **NEJM** Videos
 - c. ATS ultrasound series
 - d. RunTheList Episode
- 10. Radiology Review
 - a. Learning radiology for medical students
 - b. CXR course youtube (3h:10m)
 - c. Chest CT image
 - d. CorelM "Reading Room"
- 11. Palliative Care
 - a. CAPC courses
 - b. RunTheList Intern Tips
- 12. Deliberate practice
 - a. Schema for Tackling a Case
 - b. Human diagnosis project (HDx)
 - c. NEJM CPS
 - d. CPSolvers Virtual Morning Report
- 13. Evidence-Based Medicine
 - a. Wiki Journal Club
 - b. Visual Med CardioTrials